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Abstract. The earlier-described master equation approach to configurational kinetics of non-
equilibrium alloys is applied to study L12-type orderings in FCC alloys. We describe the kinetic
tetrahedron cluster-field method which generalizes a similar method used for equilibrium systems
to the case of non-equilibrium alloys. The method developed is used to simulate A1→ L12
and A1 → A1 + L12 transformations after a quench of an alloy from the disordered A1 phase
to the single-phase L12 state or the two-phase A1 + L12 state for a number of alloy models with
both short-range and long-range interactions. Simulations of the A1→ L12 transition show
a sharp dependence of the microstructural evolution on the type of interaction, and particularly
on the interaction range. The simulations also reveal a number of peculiar features in both
the transient microstructures and the transformation kinetics, many of them agreeing well with
experimental observations. Microstructural evolution under A1→ A1 + L12 transition was found
to be less sensitive to the type of the finite-range (‘chemical’) interaction, while in the presence of
elastic interaction this evolution shows a number of specific features which were earlier discussed
phenomenologically by Khachaturyan and co-workers and are illustrated by our simulations. We
also consider the problem of the occurrence of a transient congruent ordering under A1→ A1+L12
transformation and discuss the microstructural features of this stage.

1. Introduction

Problems of evolution of non-equilibrium statistical systems attract attention in many areas
of physics. These problems are of particular interest for configurational alloy kinetics—
the evolution of the atomic distribution in non-equilibrium alloys. The microstructure and
macroscopic properties of such alloys, e.g. strength and plasticity, depend crucially on
their thermal and mechanical history—for example, on the kinetic path taken during phase
transformations. Theoretical treatments of these problems usually employ either Monte
Carlo simulation—see e.g. [1–3]—or various phenomenological kinetic equations for local
concentrations [4–6]. However, Monte Carlo studies in this field are time consuming,
and until now they provided limited information on the details of the microstructural
evolution [1–3]. Use of the phenomenological kinetic equations is more feasible, and
Khachaturyan and co-workers [4–6] used this approach as a basis for discussing many
interesting microstructural effects. However, the phenomenological approach employs a
number of unclear approximations—in particular, the extrapolation of linear Onsager equations
for weakly non-equilibrium states to the non-linear region of states far from equilibrium, and the
relation between the phenomenological and microscopic approaches is also often unclear [7,8].

A consistent microscopical description of non-equilibrium alloys can be based on the
fundamental master equation for the probabilities of various atomic distributions over lattice
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sites [7–18]. It was shown in [13,16] that under the usual assumptions regarding the thermally
activated atomic exchange mechanism [9–11], one can derive from the master equation an
exact set of kinetic equations for local concentrations and correlators of their fluctuations.
To solve these equations, one can employ various approximate methods analogous to those
used in equilibrium statistical physics. The simplest method is that of the kinetic mean-field
approximation (KMFA) which corresponds to a generalization of the mean-field approximation
(MFA) of equilibrium statistical physics to the case of inhomogeneous and non-stationary
distributions. The KMFA was used in most of the previous applications of the master equation
approach to alloy kinetics [7–12, 18]. However, to solve the exact kinetic equations, one
can also use more accurate approximations, and references [14, 15, 17] provide examples of
treatments of various kinetic phenomena going beyond the KMFA.

The description of ordering phase transitions in FCC alloys such as the L12 and L10

orderings is a well known problem of equilibrium statistical physics where the simple MFA
is insufficient, and more exact, cluster methods are necessary. The MFA yields qualitatively
wrong phase diagrams for such systems, while the cluster-variation method (CVM) [20,21,30]
or its simplified version, the cluster-field method (CFM) [22, 23], can describe these phase
diagrams rather accurately. Therefore, to microscopically describe the kinetics of such
transitions, the kinetic generalizations of the CVM or the CFM are evidently needed. As
was discussed in [13, 23], for the versions of the CVM usually employed, such as the
tetrahedron or the tetrahedron–octahedron approximations [20,21], such generalizations seem
to be cumbersome and are hardly suitable for application to non-uniform alloys. However,
such kinetic generalization is possible and feasible for the simple version of the CFM discussed
in [23], the tetrahedron cluster-field method (TCFM). In the present work we describe this
generalization, the kinetic tetrahedron cluster-field method (KTCFM), and apply it to the
studies of some problems of kinetics of L12-type orderings.

Features of microstructural evolution after a quench of an alloy from the disordered FCC
phase (A1 phase) to the single-phase L12 or the two-phase A1 + L12 area of the phase diagram
have been studied by many authors; see e.g. [24–29]. In this work we discuss the two
problems in that field which seem to attract particular interest. The first one concerns the
relation between the effective interatomic interactionsvn in an alloy and the characteristic
morphologies and evolution of antiphase or interphase boundaries (APBs or IPBs). Numerous
observations show that in some L12-ordered alloys APBs are predominantly oriented along
certain crystallographic directions, usually in (100) planes, while in other alloys this tendency
is less pronounced or absent [24–26]. The driving force responsible for the APB orientation
has not yet been explained [24]. It was shown by Kikuchi and Cahn [30] that for the nearest-
neighbour interaction model certain APBs, called conservative ones and lying in the (100)
planes, have zero surface energy, while for all other APBs this energy is positive. Therefore,
a strong (100) alignment of APBs observed in some alloys was qualitatively explained as
the manifestation of a predominantly nearest-neighbour interaction in these systems [24,25].
However, in most real alloys the non-nearest-neighbour interactions are quite significant
[21, 31, 32], and their effect on the morphology and evolution of APBs and IPBs has not
yet been studied. In this work we investigate these problems using the KTCFM to simulate
A1 → L12 and A1 → A1 + L12 transformations for a number of alloy models with both
short-range and long-range interactions. Our simulations show, in particular, that the type of
the microstructural evolution under the A1→ L12 transition sharply depends on the form
of the effective interactionsvn. In the systems with a relatively short-range interaction, such
as the second-neighbour interaction models, the energies of the conservative APBs remain
small and the tendency of formation of such APBs under the A1→ L12 transition is quite
pronounced. In contrast, in the systems with an extended interaction range—for example, in
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the fourth-neighbour interaction models treated below—the energies of the conservative and
non-conservative APBs are close to each other and the conservative APBs play a minor or no
role in the transient microstructures. Therefore, a comparison of simulated microstructures
with the experimentally observed ones can provide information about the interactionsvn in
real alloys, which can complement the estimates ofvn obtained by other methods [21,31,32].

We also discuss the problem of ‘transient congruent ordering’ under alloy decomposition
with ordering which has recently received some attention [1, 2, 27–29]. This problem was
first discussed by Allen and Cahn [33], who supposed that such a transient state should be the
first stage of evolution after a quench of a disordered alloy below the ordering spinodal (the
instability limit of the disordered phase with respect to ordering) into the two-phase field of
coexistence of ordered and disordered phases. Allen and Cahn argued that such ordering at
an unchanged initial composition (congruent ordering) requires only local atom exchanges,
whereas evolution of the composition needs long-range atom transport with much longer times.
This congruent ordering should result in a microstructure of antiphase microdomains. Then
this transient state is succeeded by a decomposition of an alloy which is mainly realized
by the ‘wetting’ of newly formed APBs with the disordered phase, leading to two-phase
morphology with layers of disordered phase separating ordered antiphase domains [33].
These considerations were supported by a number of experimental observations, mainly for
BCC-based alloys [29, 33], as well as by the computer simulations of Khachaturyan and co-
workers [4, 5] based on the above-mentioned phenomenological kinetic equations. However,
in a careful study of the A1→ A1 + L12 transformation in Al–Li alloys, Haasen and co-
workers [27] observed some microstructures which these authors considered as incompatible
with congruent ordering. Recent Monte Carlo simulations [1, 2] as well as the small-angle
scattering data [28] did not provide evidence for congruent ordering under A1→ A1 + L12

transitions either. Therefore, this problem is considered somewhat controversial [29]. In
this work we use the KTCFM to simulate A1→ A1 + L12 transformation under conditions
similar to those of the experiments in [27]. Our simulation confirms the presence of congruent
ordering, while the microstructures observed by Haasen and co-workers [27] can be explained
by some secondary effects illustrated by our simulation.

The paper is organized as follows. In section 2 we describe the kinetic tetrahedron cluster-
field method. In section 3 we discuss the models and methods of simulation employed. In
section 4 we describe our simulations of the A1→ L12 transformation for a number of
interaction models. In section 5 we describe similar simulations of the A1→ A1 + L12

transition and also discuss the influence of elastic forces on microstructural evolution. Then
we consider the congruent ordering problem simulating A1→ A1 + L12 transition at
concentrations not far from the ordering spinodal, which corresponds to the conditions of
the experiments of Haasen and co-workers [27]. Our main conclusions are summarized in
section 6.

2. The kinetic tetrahedron cluster-field method

We consider a binary substitutional alloy A–B. Various distributions of atoms over lattice sites
i are described by the sets of occupation numbers{ni}, where the operatorni = nAi is unity
when the sitei is occupied by atom A and zero otherwise. The interaction HamiltonianH has
the form

H =
∑
i>j

vijninj +
∑
i>j>k

vijkninjnk + · · · (1)
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wherevi···j are effective interactions, and for simplicity below we consider the pair interaction
model for which equation (1) includes only the first term.

The general form of the master equation approach was described in references [13]
and [16], to be referred to as I and II. Below, we present the main equations of this approach
that are used in what follows. The fundamental master equation for the probabilityP of finding
the occupation number set{ni} = α is

dP(α)/dt =
∑
β

[W(α, β)P (β)−W(β, α)P (α)] ≡ ŜP (2)

whereW(α, β) is theβ → α transition probability.
It has been shown in [16] that in the studies of the advanced stages of phase transformations

(which are being considered in the present work), the true vacancy-mediated atomic exchange
mechanism can be replaced by an equivalent direct-exchange model, which results in great
simplification of the calculations. Adopting also the thermally activated atomic exchange
model [9–11] for probabilitiesW(α, β), we can express the transfer matrixŜ in equation (2) in
terms of the probabilityWAB

ij of an elementary intersite exchange (‘jump’) Ai ↔ Bj (see [11]
for details):

WAB
ij = nin

′
jωij exp[−β(Esij − Êinij )] ≡ nin

′
j γij exp(βÊinij ). (3)

Here:n′
j = nBj = 1−nj ; ωij is the attempt frequency;β = 1/T is the reciprocal temperature;

Esij is the saddle-point energy;γij = ωij exp(−βEsij ) is the configurationally independent

factor in the jump probability; and̂Einij is the initial (before the jump) configurational energy
of jumping atoms given by equations (I.4) or (II.7).

Multiplying equation (2) by operatorsni , ninj , etc, and summing over all configurational
states, i.e. over all number sets{ni}, we obtain the set of equations for averages〈ninj · · · nk〉 ≡
gij ···k, and in particular, for the mean occupationci = 〈ni〉 = gi :

dgij ···k/dt = 〈ninj · · · nkŜ〉 (4)

where〈(· · ·)〉 = Tr{(· · ·)P } means averaging over the distributionP , i.e. the summation of
the operator product(· · ·)P over all occupation number sets{α}.

Since theni are the projection operators(n2
i = ni), the most general expression for the

distribution functionP(α) = P {ni} in (2) can be written as

P {ni} = exp

[
β

(
� +

∑
i

λini −Q

)]
≡ exp[β(�−Q′)]. (5)

Here the quantitiesλi can be called the ‘local chemical potentials’, the ‘quasi-Hamiltonian’
Q′ is

Q′ = −
∑

i

λini +Q = −
∑
i

λini +
∑
i>j

aijninj +
∑
i>j>k

aijkninjnk + · · · (6a)

and the ‘quasi-interaction’ termQ in (6a) is an analogue of the interaction HamiltonianH
in (1). Also, the generalized grand canonical potential� is determined by the normalizing
condition

� = −T ln Tr exp(−βQ′). (6b)

Note that according to equation (6b) the mean occupationci is related to�{λi} as

ci = ∂�/∂λi. (7)

The basic approximation of the kinetic cluster-field approach (KCFA) is neglecting the
interaction renormalization effects in the distribution functionP in equation (5), i.e. putting
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the quasi-interactionsai···j (which are, generally, both time and space dependent) equal to the
interaction constantsvi···j in the Hamiltonian (1). For some specific problems—in particular,
for the finding of the so-called off-diagonal Onsager terms in the diffusivities—the KCFA
turns out to be insufficient, and more refined methods should be used [17]. However, one
may expect this approximation to adequately describe the main kinetic features of the phase
transformation if the version of the CFM employed describes its thermodynamics well. It was
shown in reference [23] that a relatively simple version of the CFM, the TCFM discussed in that
work, provides a rather accurate description of the phase diagrams with L12 and L10 orderings
for a number of realistic alloy models. Therefore, one may expect a kinetic generalization of
this approach to adequately describe the kinetics of such orderings.

The generalized free energyF defined by general equations (I.24) or (II.23) takes a
simplified form in the KCFA:

F = � +
∑
i

λici . (8)

Using equation (7), we find that the local chemical potentialλi is related toF = F {ci} as

λi = ∂F/∂ci. (9)

General kinetic equations (15) in the KCFA (as well as in the KMFA) are reduced to the
set of equations (I.25) or (II.30) for mean occupationsci :

dci/dt = 2
∑
j

Mij sinh[β(λj − λi)/2]. (10)

HereMij is the generalized mobility, which for the pair interaction model employed is given
by equation (II.32b):

Mij = γij

〈
n′
in

′
j exp

{
1

2
β

[
λi + λj −

∑
k

(vik + vjk)nk +
∑
k

(uik + ujk)nk

]}〉
(11)

whereγij , n′
i andvij = V AA

ij − 2V AB
ij + V BB

ij are the same as in equations (3) and (1), while
uij = V AA

ij − V BB
ij is the so-called asymmetrical potential [9]. Note that the mobilityMij

in equation (10) is just a kinetic factor which affects only the timescale, while the difference
λj − λi is the generalized driving force which determines all trends in the microstructural
evolution.

In actual calculations, both quantitiesλi andMij in (10) should be found using some
particular approximation of the CFM or the MFA. As was mentioned in section 1, a correct
description of orderings in FCC alloys requires that the free energyF {ci} and its derivatives
λi = ∂F/∂ci are found using the cluster methods, so as to take into account the strong nearest-
neighbour correlations in such alloys [20–23,30]. However, in the mobilityMij , equation (11),
these correlations seem to result only in some quantitative factors that weakly depend on the
local composition and ordering and do not lead to qualitative effects. Therefore, in the studies
of the main features of microstructural evolution, it does not seem necessary to take into
account the above-mentioned correlation effects inMij , and the simple MFA can be sufficient.
Therefore, in this work we employ the KMFA expression (II.36) for the mobilityMij :

Mij = γij [cicj c
′
ic

′
j exp(βui + βuj )]

1/2 (12)

wherec′i = cBi = 1 − ci .
To find the generalized driving forceλj − λi in (10), one should find the local chemical

potentialλi . To calculateλi{cj } for a non-uniform alloy we employ the tetrahedron cluster-
field method discussed in reference [23], to be referred to as III. In this method the thermo-
dynamic contribution of the nearest-neighbour interactionv1 is described using the division
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of the FCC lattice into ‘non-overlapping’ tetrahedron clusters with common vertices and no
common edges, which was suggested by Yang [34] in his ‘quasi-chemical’ method, while the
contributions of non-nearest-neighbour interactionsvn with n > 1 are taken into account in the
pair cluster approximation and are written out analytically [22, 23]. Thus the local chemical
potentialλi is given† by equation (III.41):

λi = ln
ci

1 − ci
+

∑
j,n>1

µ̃
ij,n

i +
∑

{jkl}∈tY,i
µ̃
ijkl

i (13)

where the second and the third terms describe the contributions of non-nearest-neighbour and
nearest-neighbour interactions, respectively.

The quantityµ̃ij,ni in the second term corresponds to the interactionvij = vn between sites
i andj which arenth neighbours in the lattice:

µ̃
ij,n

i = T ln(1 − cjgij ) (14)

wheregij is expressed in terms of the Mayer functionfij = exp(−βvij )− 1 as follows:

gij = 2fij
Rij + 1 +fij (ci + cj )

Rij = {
[(1 + (ci + cj )fij ]

2 − 4cicjfij (fij + 1)
}1/2

. (15)

In the case of weak interaction,βvij � 1, equation (14) transforms into the result from the
mean-field approximation:̃µij,ni = vij cj .

The quantityµ̃ijkli in the last sum of equation (13) corresponds to the contribution toλi of
Yang’s tetrahedron of sitesi, j, k, l, and the notation{jkl} ∈ tY, i means that the summation
is performed over four Yang tetrahedra that contain sitei. The expression for̃µijkli is given by
equation (III.42):

µ̃
ijkl

i = ln[yijkli (1 − ci)/ci ]. (16)

Here the quantityyijkli is defined by the relations generalizing equations (III.27)–(III.29) to the
case of the distribution (5) with the KCFA approximationQ = H . Denoting for brevity the
tetrahedron cluster of sitesi, j, k, l asα, we can write the KCFA generalization of equation
(III.27) as

yαi = exp[β(λi − ψα
i )] (17)

whereψα
i is the effective field of the environment acting on sitei in the clusterα [23].

Equations determining the quantitiesyαi in terms of intra-cluster mean occupationscs with
s equal toi, j, k or l can be written out with the use of the cluster partition functionZα. The
latter corresponds to an obvious generalization of equation (III.4):

Zα = Tr exp(−βQ′
α) (18)

whereQ′
α is the cluster quasi-Hamiltonian analogous to the cluster Hamiltonian (III.5):

Q′
α =

∑
s

(ψα
s − λs)ns +

∑
s<s ′

vss ′nsns ′ (19)

and thevss ′ = v1 correspond to intra-cluster interactions. Using equations (17)–(19) and (7),
we can express the mean occupationcs in terms ofyαs ′ just as in equation (III.29):

cs = yαs ∂ lnZα/∂y
α
s . (20)

† Note the misprints in equations (40) and (41) of [23]: the subscripts ‘n > 2’ should be changed to: ‘n > 1’. Also
note that the inappropriate term ‘quasi-chemical tetrahedron cluster method (QCTCM)’ in the English translation of
the paper [23] should be read as: ‘tetrahedron cluster-field method (TCFM)’ throughout that paper.



Kinetics of L12-type orderings in alloys 10599

According to equation (18), the cluster partition functionZα is a polynomial inyαs :

Zα = 1 +
∑
s

yαs + ζ
∑
s<s ′

yαs y
α
s ′ + ζ 3

∑
s<s ′<s ′′

yαs y
α
s ′y

α
s ′′ + ζ 6yαi y

α
j y

α
k y

α
l (21)

whereζ = exp(−βv1). Therefore, the right-hand side of equation (20) is the ratio of two
polynomials inyα, where the numerator includes only those terms of the denominator which
contain the factoryαs . For all clustersα, the equation system (20) can easily be solved for the
functionsyαi using Newton’s method.

Equations (10), (12) and (13), together with (14) and (15) forµ̃
ij,n

i and (16) and (20) for
µ̃
ijkl

i , provide a closed set of equations for finding the mean occupationsci(t). This method for
the calculation ofci(t) will hereafter be called ‘the kinetic tetrahedron cluster-field method’.

3. Models and methods of simulation

Below, we use the above-described KTCFM to simulate A1→ L12 and A1 → A1 + L12

transformations. For this simulation we employ five alloy models with the following values
of the effective pair interactionsvn:

(1) The second-neighbour interaction model withv2/v1 = ε = −0.125.
(2) The same model withε = −0.25.
(3) The same model withε = −0.5.
(4) The fourth-neighbour interaction model withvn estimated by Chassagneet al [35] from

their experimental data for the Ni0.927Al0.073 alloy at T = 673 K: v1 = 1680 K,
v2 = −210 K,v3 = 35 K andv4 = −207 K.

(5) The fourth-neighbour interaction model withv2/v1 = −0.5, v3/v1 = 0.25 andv4/v1 =
−0.125.

The effective interaction range for these models increases monotonically with the model
number. Therefore, a comparison of the simulation results for these models will provide
information on the effect of the interaction range on the microstructural evolution. Phase
diagrams for models 1, 2, 3 and 4 have been calculated in reference [23]. It was found that
the phase diagrams calculated with the help of the above-mentioned simple TCFM are very
close to those obtained using rather accurate and sophisticated versions of the CVM [20,21],
namely the tetrahedron–octahedron CVM for the ordered phase and the double-tetrahedron–
octahedron CVM for the disordered phase. Figure 1 illustrates this similarity for models 2 and
4; for models 1 and 3 both phase diagrams and their agreement with the CVM are similar.

In our treatment of A1→ A1 + L12 transformation we also discuss the influence of
elastic forces on microstructural evolution. To this end we consider two more models, to
be denoted as 2′ and 4′, which correspond to the addition of the elastic interactionvel to
the above-mentioned ‘short-range’, or ‘chemical’ interactionsvn = vcn of the corresponding
model 2 or 4, and for model 2′ we put:vc1 = 1000 K,vc2 = −v1/4 = −250 K. For the elastic
interactionvel we use the model described in [18] for the two-dimensional (2D) square lattice,
but reformulated for the three-dimensional (3D) FCC lattice. This form ofvel corresponds
to the general expression suggested by Khachaturyan [36, 37], but the phonon dynamical
matrix in that expression is described by a Born–von Karman model with the first- and second-
neighbour force constants only, and the second-neighbour constants are supposed to correspond
to a spherically symmetrical interaction [18]. This model includes three independent force
constants which are expressed in terms of elastic constantscik. The cik-values, the lattice
constanta and the concentration expansion coefficientu0 = d lna/dc entering the expression
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Figure 1. (a) The phase diagram in thec, T ′-plane for the second-neighbour-interaction model 2
with ε = v2/v1 = −0.25 whereT ′ = T/v1 is the reduced temperature. The solid and dashed lines
are curves of equilibrium between phases,Te(c), calculated in [23] using the TCFM and CVM,
respectively, as described in the text. The regions separated by the linesTe(c) correspond to the
following phases (from left to right): disordered A1 phase; coexistence of A1 and L12 phases; L12
phase; coexistence of L12 and L10 phases; L10 phase. The dotted line is the ordering spinodal
Ts(c) calculated using the TCFM. (b) The phase diagram in thec, T -plane for the model 4 withvn
estimated from experiments for Ni–Al alloys [35]. The lines have the same meaning as in (a).

for vel in our simulations correspond to the FCC Ni–Al alloys [35, 38]:c11 = 2.23 Mbar,
c12 = 1.47 Mbar,c44 = 1.25 Mbar,a = 3.57 Å andu0 ' 0.05.

Let us discuss the distributions of mean occupationsci under L12 or L10 ordering. For a
homogeneous ordered structure this distribution has the form [36]

ci = c + η1 exp(ik1 · Ri ) + η2 exp(ik2 · Ri ) + η3 exp(ik3 · Ri ) (22)

whereRi is the FCC lattice vector for sitei; η1, η2 andη3 are three components of the vector
order parameter; andkα is the superstructure vector corresponding toηα:

k1 = (1, 0, 0)2π/a k2 = (0, 1, 0)2π/a k3 = (0, 0, 1)2π/a. (23)

For the L12 structure|η1| = |η2| = |η3|, while four possible types of ordered domain
correspond to the relationsη1 = η2 = η3 > 0, η1 = −η2 = −η3 > 0, −η1 = η2 = −η3 > 0
and−η1 = −η2 = η3 > 0. In the L10 structure only one componentηα is present, which is
either positive or negative; thus six types of ordered domain are possible.

To describe the inhomogeneous states of a partially ordered alloy—in particular, the
antiphase boundaries—it is convenient to define ‘local order parameters’ which correspond
to a spatial averaging over some local region. As was shown in [18] for the case of D03

ordering, a suitable description is provided by ‘site-centred’ local order parameters for which
the averaging is taken over some nearest neighbourhood of each sitei while its occupationci
makes the largest contribution to the averages. For the L12 and L10 orderings, such site-centred
squared local order parametersη2

αi and local concentrationsci can be defined as follows:

η2
αi = 1

16

[
ci +

1

4

∑
j=nn(i)

cj exp(ikα · Rji)
]2

(24a)
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ci = 1

4

(
ci +

1

4

∑
j=nn(i)

cj

)
(24b)

wherenn(i) means the summation over nearest neighbours of sitei, Rji is Rj − Ri and the
coefficients on the right-hand side are chosen such that in the homogeneous case (22) we would
have:η2

αi = η2
α, ci = c.

From the experimental point of view, the description of alloy states in terms of mean
local occupationsci corresponds to the high-resolution electron microscopy (HREM) images
[24]. This ‘ci-representation’ is convenient for describing the atomic-scale microstructures
characteristic of the initial stages of phase transformations. The later stages correspond to the
formation of extended ordered regions which are more conveniently described by the local order
parameter distributions. These distributions are experimentally observed in the transmission
electron microscopy (TEM) images where the reflection intensity is proportional to the squared
value of the relevant order parameter [24]. Therefore, it is convenient to characterize the partial
L12 ordering by the distribution of quantitiesη2

i = η2
1i +η

2
2i +η

2
3i , and this distribution is called

below the ‘η2-representation’.
Our simulations were performed in FCC simulation boxes of sizesL2 ×H (whereL and

H are given in units of the lattice constanta), with periodic boundary conditions. We used both
3D simulations withH = L and quasi-2D simulations withH = 1. Employing the 2D models
is a usual method for extending the maximum size of microstructures examined [4–6, 8, 18],
but, below, the conclusions derived from 2D simulations are usually complemented with 3D
simulations. The simulation methods were the same as in references [7, 8, 16, 18]. In the
simulations of both A1→ L12 and A1→ A1 + L12 transformations, the initial as-quenched
distributionci(0) was characterized by its mean valuec and small random fluctuationsδci ;
usually we usedδci = ±0.01.

4. Kinetics of the A1 → L12 transformation

In this section we consider the microstructural evolution after a rapid quench of a disordered
A1 phase into the single-phase L12 state. To this end we simulate this transformation for the
above-described five alloy models at the stoichiometric initial concentrationc = 0.25. We
also discuss the effect of non-stoichiometry on the evolution, considering it for model 2.

Some results of our simulation are presented in figures 2–9. Most of them correspond to
2D simulations in boxes of sizeVb = L2 × H with H = 1 andL = 64 orL = 128, but for
model 1 we also carried out a 3D simulation withL = H = 50. For the givenz-coordinate
x3 (with x3 = 0 for 2D simulation), each figure includes all FCC lattice sites lying in two
adjacent planes,z = x3a andz = (x3 + 1/2)a; thus the figure of areaL2 shows 4L2 lattice
sites. The values of the temperatureT at c = 0.25 for the different models were chosen such
that its ratio to the ordering spinodal temperatureTs at c = 0.25 was approximately the same
for all models:T/Ts ' 0.8; thus the influences of the temperature on the evolution for the
different models are similar. The distribution of initial fluctuationsδci for the given size of the
simulation box was taken as the same for all models. Therefore, the microstructures shown in
figures 2, 4, 5 and 7 forVb = 642 × 1 correspond to the same distribution of initialδci , just
like the microstructures shown in figures 8 and 9 forVb = 1282 × 1.

In the description of 3D microstructures in figure 3, we present the distributions of
‘tetrahedrally averaged’ local order parametersη2

j t rather than the site-centredη2
i shown in

other figures. Theη2
j t -distributions correspond to planesx3 = n + 1/4 equidistant from the

atomic planesx3 = nandx3 = n+1/2, and the pointj corresponds to the centre of a tetrahedron
of four nearest FCC lattice sites, whileη2

j t is obtained by averaging of site-centredη2
i -values for
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Figure 2. Temporal evolution of the second-neighbour-interaction model 1 withε = v2/v1 =
−0.125 under the phase transformation A1→ L12 shown in theη2-representation for the
simulation box sizeVb = 642 × 1 at c = 0.25, T ′ = T/v1 = 0.35 and the following values
of the reduced timet ′ = tγnn: (a) 2; (b) 3; (c) 20; (d) 100; (e) 177; and (f ) 350. The grey
level varies linearly withη2

i = η2
1i + η2

2i + η2
3i between its minimum and maximum values from

completely dark to completely bright.

these four sites. We employ here thisη2
t -representation instead of theη2-representation used

in other figures since, as is discussed below, some APBs are locally L10 ordered, and when
such an APB is situated in the plane of a figure (which is possible only for 3D simulations), its
distribution ofη2

i shows checkerboard-like irregularities. These irregularities are related just
to our definition (24a) of local order parameters (which, for presentation of these particular
microstructures, does not seem to be suitable), and to avoid such irregularities in figure 3 we
employ theη2

t -representation.
Let us first discuss the microstructures for model 1 with short-range interaction which are

shown in figures 2 and 3. A distinctive feature of these microstructures is a predominance
of conservative APBs with (100)-type orientation, particularly at the later stages of evolution
shown in figures 2(f ) and 3. As mentioned in section 1, for the nearest-neighbour interaction
model with vn>1 = 0, such APBs (for which the translation vector relating two ordered
domains separated by this APB lies within the APB plane) have zero excess energy, unlike
other, non-conservative APBs [30]. At finite smallε = v2/v1, this energy is non-zero but
small. Thus the above-mentioned predominance of conservative APBs for model 1 with small
|ε| ' 0.1 is natural. Figures 2 and 3 show that the conservative APBs are notably thinner
than the non-conservative ones (atε = 0 the width of a conservative APB is just one atomic
layer [30]). The simulation also shows that the mobility of conservative APBs is quite low,
and the microstructural evolution, i.e. the growth of ordered domains, is mainly realized via
motion of non-conservative APBs; see frames 2(b)–2(f ). Frame 2(a) shows an early stage of
the transformation and illustrates that conservative APBs are already forming at this stage.
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Figure 3. As figure 2, but shown in theη2
t -representation described in the text forVb = 503 at

t ′ = 350 and the following values of the coordinatex3 = z/a: (a) 1
4 ; (b) 21

4 ; (c) 31
4 ; (d) 61

4 ;
(e) 121

4 ; and (f ) 221
4 .

Comparison of frames 2(f ) and 3(a)–3(f ) illustrates some characteristic differences
between 2D and 3D microstructures. In particular, black or grey domains in frames 3(b)–
3(f ) correspond to locally disordered or locally L10-ordered APBs lying in the plane of figure,
while in 2D microstructures only the edge-on APBs are presented, and for them local L10

orderings are not clearly seen in theη2-representation used; see below. In addition, some 3D
APBs in figure 3 are tilted with respect to the plane of the figure and thus seem to be thicker
than the edge-on APBs shown in figure 2. However, the main features of the microstructure
under 2D and 3D simulations appear to be the same, which justifies the employment of 2D
simulations for the studies of these features.

The results shown in figures 2 and 3 can be compared with experimental observations
for the Cu3Au system for which the nearest-neighbour interaction is supposed to exceed other
interactions by an order of magnitude [25], just as for our model 1. In a detailed study of APBs
in Cu3Au, Loiseau and co-workers [24, 25] noted the following peculiar features in the APB
distribution:

(i) The predominance of conservative APBs.
(ii) The presence of APBs with slight deviation from the (100) plane which actually have a

step-like structure with small ledges normal to this plane.
(iii) The presence of triple junctions in which two conservative APBs normal to each other are

connected with a non-conservative APB.
(iv) The presence of quadruple junctions in which a non-conservative APB connecting two

triple junctions described in (iii) has an atomic-scale length.
(v) The presence of loop-like configurations of some non-conservative APBs adjacent to the

conservative APBs.
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Figure 4. As figure 2, but for model 2 withε = −0.25 atT ′ = 0.5 and the following values oft ′:
(a) 3; (b) 7; (c) 10; and (d) 200.

The microstructures shown in figures 2 and 3 can illustrate all of these observations, even
though the experiments of Loiseau and co-workers [24, 25] correspond to much later stages
of evolution and larger ordered domains. In particular: step-like APBs consisting of long
conservative segments and the small non-conservative ledges mentioned in point (ii) are seen
in frames 2(d), 3(d) and 3(f ); triple and quadruple junctions mentioned in points (iii) and
(iv) are present in almost all frames of figures 2 and 3; and loop-like non-conservative APBs
adjacent to conservative APBs are seen in frames 3(e) and 3(f ) (as well as in the upper right
part of frames 4(a) and 4(b) and in the lower right part of frames 7(b) and 7(c)). Therefore,
the above-mentioned features (i)–(v) of APBs in systems with short-range interaction appear
to be already present at relatively early stages of the microstructural evolution.

Microstructures for models 2 and 3 are shown in figures 4–7. Model 2 with|ε| = |v2/v1| =
0.25 and model 3 with|ε| = 0.5 correspond to a larger effective interaction range compared to
model 1 with|ε| = 0.125. Therefore, the above-discussed microstructural features related to
the energetic preference of conservative APBs with respect to non-conservative ones are less
pronounced for model 2 and still less so for model 3. Thus the relative number of conservative
APBs in the microstructures for these three models decreases with the increase of|ε|, and these
APBs in figures 4–7 are thicker than in figure 2. The reduction of the number of low-mobility
conservative APBs leads to a notable acceleration of the microstructural evolution, which is
clearly seen, in particular, from the comparison of frames 2(f ), 4(d) and 7(d). However, for
all these second-neighbour interaction models the conservative APBs still play an important
role in the microstructures; thus all of these models can be considered as systems with a
predominantly short-range interaction.
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Figure 5. As figure 4, but at the following values ofc andt ′: (a) c = 0.22, t ′ = 10; (b)c = 0.22,
t ′ = 200; (c)c = 0.32, t ′ = 10; and (d)c = 0.32, t ′ = 200.

Let us now consider the features of evolution of such systems. For the stoichiometric
compositionc = 0.25, this evolution is illustrated by figures 2, 4 and 7. The figures show that
the conservative APBs remain virtually immobile and the evolution is realized via motion of
non-conservative APBs and their interaction with the conservative APBs. Let us discuss the
mechanisms of this interaction, abbreviating for brevity the terms ‘conservative APB’, ‘non-
conservative APB’ and ‘antiphase ordered domain’ to c-APB, nc-APB and APD, respectively.
Examination of figures 2, 4 and 7 reveals the following characteristic processes of interaction
between c-APBs and nc-APBs:

(a) ‘Sweeping’ of a c-APB by an adjacent moving nc-APB. This process is seen: in the left-
hand lower part of frames 4(a)–4(d) (as well as 7(a)–7(c) and 2(b), 2(c)); in the left-hand
upper part of frames 2(d) and 2(e); in the right-hand upper part of frames 2(b) and 2(c);
in frames 2(b)–2(d) atx1 = x/a ' 50–55 andx2 = y/a ' 16–25; etc.

(b) Wetting of a c-APB by adjacent nc-APBs. This is seen: in frames 4(a)–4(c) (as well as
2(b), 2(c)) atx1 ' 53, x2 ' 42 where a horizontal c-APB is first wetted by adjacent
left-hand and right-hand nc-APBs and is then ‘consumed’ by an nc-APB moving from
below (with the disappearance of an APD lying between these two APBs); in the left-hand
upper corner of frames 4(a)–4(c) (as well as 7(a)–7(c) and 2(b), 2(c)); etc.

(c) Motion of a triple junction of two nc-APBs with a c-APB along the direction of the latter
up to the crossing of another c-APB normal to the first one, with the formation of a triple
junction of these two c-APBs with an nc-APB.Such a process is seen: in the right-hand
upper part of frames 2(b) and 2(c) showing the formation of two vertical c-APBs ending
with triple junctions; in frames 4(a)–4(d) (as well as 2(b), 2(c)) atx1 ' 18, x2 ' 27; in
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Figure 6. Variation of the local concentrationci and local order parameters|ηαi | with the coordinate
x1 = x/a atx2 = y/a = 48 for model 2 atT ′ = 0.5, t ′ = 200 and the following concentrationsc:
(a)c = 0.22 (frame 5(b)); (b)c = 0.25 (frame 4(b)); and (c)c = 0.32 (frame 5(d)). The solid line
corresponds toci ; triangles, circles and squares correspond to|η1i |, |η2i | and|η3i |, respectively;
and dotted lines link identical symbols for clarity.

frames 4(a)–4(c) (as well as 2(b), 2(c)) atx1 ' 61, x2 ' 22; etc.
(d) ‘Splitting’ of an nc-APB into a c-APB and an nc-APB according to the reaction:

nc-APB → c-APB + nc-APB

with the formation of either a triple junction or a new APD. This peculiar kinetic process
is observed for model 1 with the shortest interaction range, for which the c-APB energy
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Figure 7. As figure 2, but for model 3 withε = −0.5 atT ′ = 0.77 and the following values oft ′:
(a) 3; (b) 5; (c) 7; and (d) 200.

is particularly small. Splitting with the formation of triple junctions is seen: in the central
lower part of frames 2(c) and 2(d) atx1 ' 30, x2 ' 20, and in the right-hand upper
part of frames 2(b) and 2(c) atx1 ' 48, x2 ' 45. Splitting with the formation of a new
domain is seen: in frames 2(b) and 2(c) atx1 ' 36, x2 ' 43; in frames 2(c) and 2(d)
at x1 ' 12, x2 ' 35; and in frames 2(d)–2(f ) atx1 ' 12, x2 ' 42. The latter process
seems to be particularly interesting and includes several stages. First, an APD seen in the
left-hand upper corner of frame 2(c) disappears with the formation of an approximately
horizontal nc-APB seen in the frame 2(d) which moves down sweeping two adjacent c-
APBs. When it reaches a triple junction of its adjacent c-APB with two other nc-APBs
seen in frame 2(d), the resulting junction of three nc-APBs immediately splits into two
triple junctions—that of a pair of c-APBs with an nc-APB and that of a c-APB with two
nc-APBs, with the formation of a new APD seen in frame 2(e).

The splitting effect is related to very small excess energies of c-APBs in short-range-
interaction systems, as well as to geometrical constraints on the formation of such APBs
between APDs of different types. An APD of a given type (say, A) can form a c-APB of a
certain orientation (say, (100)) with an APD of only one type (B) but not with APDs of two
other types (C and D) [30]. Therefore, it can be energetically favourable to split an nc-APB
between APDs of types A and C (or D) with the formation of an additional APD of type B if
the area of a newly formed nc-APB between APDs of types B and C is lower than the area
of an initial nc-APB between APDs of types A and C. Let us also note that our simulation
revealed the splitting effect only for model 1 with|ε| = |v2/v1| = 0.125, while for models 2
and 3 with larger|ε| this effect was not observed.
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Figure 8. As figure 2, but for model 4 withVb = 1282 × 1 atT ′ = 1.15 and the following values
of t ′: (a) 2; (b) 3; (c) 20; (d) 30; (e) 150; and (f ) 200.

Among other processes illustrated by figures 2, 4 and 7, one can note a peculiar effect of
‘tearing off’ of some nc-APBs. Two such events are seen in frames 7(b) and 7(c), one to the
right of the centre and another one above the centre. However, this effect is not specific to
short-range-interaction systems, and the lower part of frames 9(a)–9(c) shows it for model 5
with a relatively longe-range (‘extended-range’) interaction.

Let us discuss the effect of non-stoichiometry on the evolution. To this end we have made
simulations for model 2 at the same reduced temperatureT ′ = T/v1 = 0.5 as in the simulation
shown in figure 5 but at different concentrations,c = 0.22 andc = 0.32. In the phase diagram
for this model shown in figure 1(a) these pointsc, T ′ correspond to approximately the same
distance,δc ' 0.02, from the two-phase field, A1 + L12 and L12 + L10, respectively. Some
results of this simulation are shown in figures 5 and 6. Comparison of frames 4(c), 5(a) and
5(c), as well as 4(d), 5(b) and 5(d), shows that general features of microstructures for all three
compositions are similar, though at lower concentrationc = 0.22 the number of conservative
APBs in microstructures is somewhat reduced while the evolution rate is slightly enhanced.
However, the structure of APBs reveals significant changes with composition, which are seen
in figures 5 and 6. At lowerc = 0.22, the local concentrationci and the local order parameters
|ηαi | in the APB region are notably lower than those at stoichiometricc = 0.25, which indicates
that APBs are locally disordered. In contrast, at higherc = 0.32 the local concentrationsci
and the local order parameters|ηαi | for someα = α0 increase near the APB, while for two
otherα 6= α0 the values|ηαi | decrease here. This indicates that the APB is locally L10

ordered. The effects of local L10 ordering or disordering of APBs in the L12 phase were
first discussed by Kikuchi and Cahn [30] for the nearest-neighbour interaction model near the
congruent point. Figure 6 displays these effects in terms of local order parameters (24a) and
local concentration (24b). It also illustrates the concentrational dependence of these effects for
both non-conservative APBs (atx1 ' 16 andx1 ' 48) and conservative APBs (atx1 ' 58).
At stoichiometricc = 0.25, some parts of APBs (‘steps’ or ‘ledges’ in figure 4) are weakly
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Figure 9. As figure 8, but for model 5 atT ′ = 1.34 and the following values oft ′: (a) 20; (b) 44;
(c) 46; and (d) 200.

L10 ordered, while other parts adjacent to them are locally disordered, which is illustrated by
figure 6(b). A more detailed discussion of the structure and properties of APBs in the L12

phase for various compositions, temperatures and types of interaction will be given elsewhere.
Let us now consider the evolution for the Ni–Al-type model 4 with a relatively long-range

interaction. This is illustrated by figure 8. Frames 8(a) and 8(b) show an effect of thinning of
APBs at the early stages of evolution due to the development of ordering; similar effects were
observed for all other models. Frames 8(b)–8(f ) show that the microstructures for this system
include mainly non-conservative APBs. However, the conservative APBs are present, too, and
have a noticeable effect on microstructures. In particular, the evolution of ordered domains in
the central part of frames 8(c)–8(e) as well as in the lower left-hand part of frames 8(d)–8(f )
illustrates the effect of transformation of non-conservative APBs into conservative ones. The
final microstructure shown in frame 8(f ) reveals a noticeable anisotropy in the distribution of
APBs and is qualitatively similar to that observed in a real Ni3Al-based alloy (see figure 6
in [26]).

Figure 9, for model 5, illustrates the evolution of a system with an ‘extended-range’
interaction. All APBs seen in the microstructures are non-conservative and are distributed
isotropically. Triple junctions of APBs at later stages of the evolution correspond to
approximately equiangle configurations with angles of about 2π/3, which is characteristic
for isotropic systems. The comparison of the microstructures in frames 8(f ) and 9(d) (each
including only four different ordered domains) again indicates a noticeable anisotropy in the
Ni–Al-type model 4 compared to the isotropic model 5. Let us note that the microstructure in
frame 9(d) is similar to those observed for Cu–Pd alloys (see figure 9 in [24]).
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5. Features of evolution under A1→ A1 + L12 transition

In this section we consider the A1→ A1 + L12 transition. For simplicity we suppose the
transformation temperatureT to be lower than the ordering spinodal temperatureTs(c), so
as to avoid discussing the problems of nucleation. First we consider the dependence of
microstructural evolution on the type of interaction. As discussed above, for the A1→ L12

transition such dependence is rather sharp due to the predominance of highly anisotropic
conservative APBs in the short-range-interaction systems and the absence of anisotropy in the
extended-range-interaction systems. In the two-phase region under consideration, different
L12-ordered domains are usually surrounded by the disordered phase; thus the possible
anisotropy of the microstructures depends on the anisotropy of the energies of interphase
boundaries (IPBs). For the nearest-neighbour interaction model, Kikuchi and Cahn [30] found
the IPB energies to be only slightly anisotropic, in great contrast to the highly anisotropic APB
energies. Therefore, one can expect the microstructures under A1→ A1 + L12 transition
(except possibly at its early stage) to display neither significant anisotropy nor sensitivity to
the interaction range as long as the latter remains finite, i.e. in the absence of the significant
elastic forces discussed below.

Figure 10 illustrates the evolution for model 1 with a short-range interaction. Frame
10(a) (which may be compared with frame 2(b)) shows the stage of initial congruent ordering
(mentioned in section 1 and discussed below) when the newly formed APBs between different
ordered domains begin to be wetted by the disordered phase. In this frame one can recognize
many (100)-oriented IPBs obtained by wetting of the initial conservative APBs. Frames

a b

c d

Figure 10. As figure 2, but for the A1→ A1+L12 transformation withVb = 1282×1 atc = 0.17,
T ′ = 0.24 K and the following values oft ′: (a) 3; (b) 10; (c) 100; and (d) 300.
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10(b)–10(d) show that after the transformation of these APBs into IPBs is completed, their
initial anisotropy falls off, in agreement with the above-mentioned conclusions [30] about a
weak anisotropy of IPB energies. In the microstructure of frame 10(d) the anisotropy is almost
absent, in great contrast with the case for frame 2(f ) for the same model and the same evolution
time but for the A1→ L12 transition. As expected, the simulations for models 2, 3, 4 and
5 show still lower anisotropy of microstructures, which can be illustrated by frame 12(a) for
early t ′ = 10 (when the elastic interactionvel that distinguishes between the models 4′ and 4
is still insignificant; see below). Therefore, the type of interaction affects microstructures only
at early stages of the transformation corresponding to congruent ordering.

Let us consider the effects of elastic forces. Their influence on the microstructural
evolution under alloy decomposition with ordering was thoroughly discussed by Khachaturyan
and co-workers with the use of phenomenological kinetic equations; see e.g. [4–6]. In
particular, a recent work [6] describes these effects under A1→ A1 + L12 transformation
for a phenomenological model fitted to the Ni–Al alloys. The microscopical treatment of these
problems described below can complement and verify the phenomenological approaches.

We have made simulations for models 2′ and 4′ described in section 3. The elastic
interactionvel for these models corresponds to Ni-enriched Ni–Al alloys. Thus the values
veln for several first neighboursn can be estimated from the calculations [37] for the Ni-based
alloys: v1 ' −130 K,v2 ' −36 K,v3 ' 6 K andv4 ' 19 K. The ‘chemical’ contributionsvcn
to the totalvn = vcn + veln for the models 2′ and 4′ are given in section 3 and they exceed theveln
by an order of magnitude. Hence the phase diagrams for models 2′ and 4′ virtually coincide
with those for models 2 and 4 presented in figure 1. However, as discussed by Khachaturyan
and co-workers [4], the influence ofvel on the microstructures increases with the characteristic
size l of the precipitates, and at sufficiently largel it results in the alignment of IPBs along
the elastically soft (100) directions. Khachaturyan and co-workers mentioned that the degree
of this alignment depends on the elastic anisotropy energyvelan which can be estimated as the
difference between the asymptotic valuesvelas of the Fourier componentsvel(k) at |k| → 0 for
the elastically stiff and elastically soft directions, (110) and (100):

velan = velas(110)− velas(100). (25)

The characteristic precipitate sizelc for which the elastic anisotropy effects become noticeable
depends on the ratio ofvelan to the characteristic IPB energy (which for estimates can be taken
as the critical temperature of ordering,Tc), as well as on the ratio ofvelan to the transformation
temperatureT .

The results of our simulation presented in figures 11 and 12 can be used to illustrate
these considerations and make them specific. For the Ni–Al-type model of elastic interaction
employed, thevelan-value (which can be found using the expression forvelas given in equation (29)
of [18]) is about 700 K. Therefore, the ratiosλc = velan/Tc andλT = velan/T for model 2′ are
about 0.9 and 1.75, respectively, while for model 4′ they are much lower:λc(4′) ' 0.35 and
λT (4′) ' 0.7. Thus the elastic anisotropy effects for model 2′ are much stronger than those for
model 4′. In addition, the chemical interactionsvcn for model 2′ are short range, which leads to
a notable (100) alignment of APBs under congruent ordering. Unlike in the above-discussed
case of no elastic interaction, this initial anisotropy is not lost after the transformation of these
APBs into IPBs, but is fixed and enhanced by significant elastic forces. All of these factors
result in a noticeable alignment of the precipitates even at moderate sizeslc ∼ 10a.

Figure 11 also illustrates a number of other effects of elastic interaction noted by
Khachaturyan and co-workers. In particular, a suppression of the coalescence of differently
ordered precipitates discussed in [5,6] is seen in the left-hand lower part of frames 11(c)–11(f ),
as well as in frame 11(c) for a number of pairs of adjacent precipitates: those with centres at
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Figure 11. As figure 10, but withVb = 642 × 1 shown in thec-representation for model 2′ at
c = 0.17,T = 400 K and the following values oft ′: (a) 10; (b) 100; (c) 500; (d) 1000; (e) 2000;
and (f ) 4200. The grey level varies linearly withci between its minimum and maximum values
from completely dark to completely bright.
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Figure 12. As figure 10, but for the Ni–Al-type model 4′ at c = 0.17, T = 1000 K and the
following values oft ′: (a) 10; (b) 100; (c) 500; (d) 1000; (e) 2000; and (f ) 4000.



Kinetics of L12-type orderings in alloys 10613

(x1 ' 10,x2 ' 18) and (x1 ' 5, x2 ' 33); at (x1 ' 48,x2 ' 23) and (x1 ' 32,x2 ' 25); at
(x1 ' 48,x2 ' 23) and (x1 ' 44,x2 ' 7); etc. In the course of further evolution, the smaller
precipitate of each pair usually dissolves (‘evaporates’) but never coalesces with a differently
ordered neighbour. Frame 11(f ) also shows such microstructural features as a ‘rectangle-
shaped’ precipitate (in the left-hand upper corner) and a ‘discontinuous rafting’ of chains of
approximately rectangular particles. These features were also discussed by Khachaturyan and
co-workers and they agree well with experimental observations [5,6].

Figure 12 illustrates a different type of evolution. It corresponds to the Ni–Al-type model
4′ for which the influence of elastic anisotropy on microstructures (characterized by the above-
mentioned parametersλc andλT ) is much weaker than that for model 2′, while the chemical
interactionsvcn are basically extended-range ones. Because of that, the congruent ordering
stage here reveals no anisotropy of APBs, and the IPBs formed from these APBs and shown in
frame 12(a) are isotropic too. During the next stage of the transformation, both concentration
and order parameters within the ordered precipitates increase, tending to their equilibrium
values in the L12 phase (at the boundary of the single-phase region in thec, T -plane). This
process leads to the ‘shrinking’ of the precipitates—a decrease of their volume due to the atom
number conservation, which can result, in particular, in the formation of ‘holes’, i.e. islands
of the disordered phase within some extended precipitates. This stage is illustrated by frames
12(b) and 12(c), and these microstructures still do not show the effects of elastic anisotropy.
These effects begin to be noticeable only at the next, coarsening stage when the elastically
misfitted ordered and disordered regions become sufficiently large. It is illustrated by frames
12(d)–12(f ) and corresponds to characteristic sizeslc & 50a. With a further development
of coarsening, the manifestations of elastic effects in microstructures become more notable.
However, for all stages of evolution considered they remain much less pronounced than those
shown in figure 11 for model 2′.

Let us now discuss the problem of congruent ordering under the A1→ A1 + L12

transformation. As mentioned in section 1, the presence of such an initial transient stage
under alloy decomposition with ordering follows from rather general physical arguments and
it was supported by experimental observations for a number of alloy systems [4, 29, 33].
However, in the HREM study of the early decomposition stage of Al–Li alloys, Haasen and
co-workers [27] observed microstructures seeming to be incompatible with the occurrence
of congruent ordering. In these microstructures, many neighbouring ordered precipitates
(separated by a disordered layer) are ‘in-phase’, i.e. belong to the same type of L12-ordered
domains. At the same time, the congruent ordering corresponds to the microstructure of
differently ordered neighbouring domains separated by APBs which later on transform into
IPBs; see e.g. frames 10(a), 11(a) and 12(a). Haasen and co-workers concluded that these
observations contradict the occurrence of congruent ordering under the A1→ A1 + L12

transition in the Al–Li system.
To clarify the problem, we made simulations of the A1→ A1 + L12 transition under

conditions similar to those of experiments by Haasen and co-workers, i.e. atc, T -points
positioned in thec, T -plane not far from the ordering spinodal. For suchc, T -values the
initial ordered domains formed under congruent ordering are sufficiently large and are similar
to those observed by Haasen and co-workers. Some results of our simulations are shown in
figures 13–15. The upper frames in figures 13 and 14 correspond to 3D simulation and are
shown in ac-representation to facilitate comparison with the HREM images in [27]. The
lower frames in these figures and figure 15 correspond to 2D simulations and show more
sizable microstructures for which it is easier to follow the evolution in anη2-representation.

In all of our simulations we observed the stage of congruent ordering which is seen, for
example, in frames 13(c), 13(e), 14(b), 14(d) and 15(a). However, both before and after this
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a b c

d e f

Figure 13. As figure 11, but for model 2 atc = 0.13, T ′ = 0.3. The three upper frames cor-
respond to 3D simulation withVb = 603 shown in thec-representation atx3 = 0 and the following
values oft ′: (a) 3.2; (b) 3.5; and (c) 4. The three lower frames correspond to 2D simulation with
Vb = 1282 × 1 shown in theη2-representation at the following values oft ′: (d) 2.6; (e) 3; and
(f ) 10.

stage we observed a number of microstructures with neighbouring in-phase domains separated
by a disordered layer.

Figures 13–15 illustrate at least three possible mechanisms for the formation of
neighbouring in-phase domains. The first one is typical of a stage before the completion
of congruent ordering and corresponds to the coalescence of neighbouring in-phase domains
being initially approximately equiaxial, with the formation of more extended irregularly shaped
domains. Such processes can be observed, for example: in frames 13(a), 13(b) near the points
(x1 ' x2 ' 30), (x1 ' x2 ' 7) and (x1 ' 13,x2 ' 26); in the upper left-hand and lower right-
hand part of frames 14(a), 14(b); and for many neighbouring domains in frames 13(d) and 14(c)
which subsequently coalesce, with the formation of extended domains seen in frames 13(e)
and 14(d). Let us note that the microstructures in frames 13(a), 13(b) and 14(a) illustrating
this process are quite similar to those observed by Haasen and co-workers [27].

The second mechanism is observed after the completion of congruent ordering and
corresponds to the disappearance of a small ‘out-of-phase’ domain positioned between larger
in-phase domains. It is seen, for example, in the left-hand lower part of frame 13(e) where a
small domain atx1 ' 12, x2 ' 15 separates two pairs of larger domains which are in phase
with each other (which can be seen in thec-representation). After the disappearance of this
small domain shown in frame 13(f ) these two pairs of in-phase domains become neighbours.
Such a mechanism is also seen in the left-hand part of frames 10(b) and 10(c), atx1 ' 30 and
x2 between about 60 and 80, where the disappearance of several small domains results in a
microstructure with several in-phase neighbours. This mechanism is not so typical as the first
one but we observed it in many simulations too.
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a b

c d

Figure 14. As figure 13, but atc = 0.12. The two upper frames correspond to 3D simulation
with Vb = 503 shown in thec-representation atx3 = 0 and the following values oft ′: (a) 8.6;
and (b) 10. The two lower frames correspond to 2D simulation withVb = 1282 × 1 shown in the
η2-representation at the following values oft ′: (c) 5.6; and (d) 8.

The third mechanism of the formation of neighbouring in-phase domains is illustrated
in figure 15. It corresponds to a later stage of transformation when a ‘shrinking’ of initially
extended ordered domains (mentioned above in the discussion of frames 12(a)–12(c)) results
in a tearing-off of some of them. Comparison of frames 15(a)–15(d) shows that many ordered
precipitates in frames 15(c) and 15(d) have in-phase neighbours formed in this way. This
mechanism was observed only in the simulations withc, T -values that were quite close to the
ordering spinodalcs(T ) (for example, atc− cs ' 0.01 for the simulation shown in figure 15),
and the microstructures corresponding to this mechanism do not seem to resemble those seen by
Haasen and co-workers [27]. However, it can illustrate one more opportunity for the formation
of neighbouring in-phase domains.

Finally, let us discuss the temporal evolution of local concentrations and local order
parameters in the course of congruent ordering. Speaking formally, the term ‘congruent’
implies local concentrations to be unchanged and equal to the initial constant concentrationc

(saying nothing about the small initial fluctuationsδci) while the order parameter grows and
approaches its equilibrium value for the givenc. However, as was repeatedly noted in this and
previous sections, the local concentration within the APBs at sub-stoichiometric compositions
is depleted even in the homogeneous L12 phase, while in the two-phase A1 + L12 region the
initially formed APBs are wetted by the disordered phase which results in a further depletion
of local concentrations. Therefore, it is not cleara priori whether APBs being formed under
congruent ordering have time to equilibrate locally and deplete their local concentration, or
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a b

c d

Figure 15. As figure 13, but for 2D simulation withVb = 1282 × 1 for model 3 atc = 0.11,
T ′ = 0.5 shown in theη2-representation at the following values oft ′: (a) 7; (b) 40; (c) 100; and
(d) 350.

whether for some time interval this local concentration preserves the initial constant value
c. Note that such depletion of local concentrations within APBs requires only local atom
exchanges just like the congruent ordering [33]. Therefore, generally speaking, the time
intervals needed for the formation of congruently ordered domains and for the depletion of
local concentrations within the APBs separating these domains should be similar.

To study this point in more detail, we analysed the results of our simulation as follows.
We divide all lattice sites into locally ordered and locally disordered ones. The degree of
local ordering is characterized by the valueη2

i = η2
1i + η2

2i + η2
3i , and at each evolution time

t we determine the mean valueη2(t), averaging theη2
i -values over all lattice sites. Then

we classify (somewhat arbitrarily) the sites withη2
i > 0.5η2(t) as locally ordered and those

with η2
i < 0.5η2(t) as locally disordered. After that we find the average concentration and the

average squared order parameter for locally ordered and locally disordered regions separately:

c+ = 1

N+

∑
i=i+

ci c− = 1

N−

∑
i=i−

ci (26a)

η2
+ = 1

N+

∑
i=i+

η2
i η2

− = 1

N−

∑
i=i−

η2
i (26b)

where the subscript ‘+’ or ‘−’ corresponds to locally ordered or locally disordered sitesi+
or i− while N+ or N− means the total number of such sites. Locally ordered regions under
congruent ordering evidently correspond to ordered domains, while locally disordered regions
correspond to APBs. Therefore, an analysis of the temporal evolution ofc±(t) andη2

±(t) can
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provide information about the evolution of local concentrations and order parameters both in
ordered domains and near the APBs.

This temporal evolution is illustrated in figure 16, which corresponds to the 3D simulation
shown in the upper frames of figure 13. The results of other simulations are similar.
Comparison of curvesc−(t) and η2

+(t) in figure 16 shows that the depletion of local
concentrations within APBs begins almost simultaneously with the appearance of a noticeable
ordering. In other words, a newly formed APB begins to equilibrate and deplete its local
concentration immediately. One can notice just a short time interval, 2.5 . t ′ . 2.8, when
the rise ofη2

+(t) notably surpasses the decrease ofc−(t); thus within this interval the evolution
may be termed almost ‘truly congruent’. However, after the completion of congruent ordering
in the commonly used sense of this term (which corresponds tot ′ & 5 in figure 16), the local
concentration within APBs is already depleted. Let us also mention that the presence of such
depletion of local concentrations at APBs may lead to some terminological misunderstanding—
in particular, in the interpretation of the results of Monte Carlo simulations [1, 2] concerning
the occurrence of congruent ordering.

0

0.02
0.1

0.04

0.2

0 4 8 12t’

η2
+-c+-

1

2

3

4

Figure 16. Temporal evolution of the mean concentrationsc± (left-hand scale) and squared order
parametersη2± (right-hand scale) averaged over locally ordered or locally disordered regions as
described in the text for the simulation shown in frames 13(a)–13(c). Curves 1, 2, 3 and 4 correspond
to c+, η2

+, c− andη2−, respectively, where the subscript ‘+’ or ‘−’ corresponds to the locally ordered
or the locally disordered region.

6. Conclusions

Let us summarize the main results of this work. We apply the earlier-described kinetic
cluster-field approach to study the ordering kinetics in FCC alloys. First we describe the
kinetic tetrahedron cluster-field method (KTCFM) which generalizes the tetrahedron cluster-
field method (TCFM) used for equilibrium systems to the case of non-equilibrium and
inhomogeneous alloys. We use the KTCFM to derive the kinetic equations for mean lattice
site occupations which determine local concentrations and local order parameters in an alloy.
These equations are sufficiently simple and convenient for numerical solution. As the TCFM
describes the phase diagrams with L12 and L10 orderings for a number of realistic alloy models
rather accurately [23], one may expect the KTCFM to describe the kinetics of such transitions
with a similar accuracy.

Then we use the KTCFM to simulate the A1→ L12 and A1 → A1 + L12 phase
transformations after a quench of an alloy from the disordered A1 phase to the single-phase
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L12 field or the two-phase A1+L12 field of the phase diagram. In these simulations we employ
five alloy models with different types of interaction, from the short-range-interaction model 1
to the extended-range-interaction model 5. To discuss the influence of elastic forces on the
A1 → A1 + L12 transition, we also consider two more models, 2′ and 4′, which include the
elastic interactionvel with the parameters corresponding to Ni–Al alloys. We employed both
2D and 3D simulations, and all significant features of evolution in both types of simulation
were found to be similar.

Simulations of the A1→ L12 transformation were made at stoichiometric concentration
c = 0.25 for the five above-mentioned alloy models. Our results show that the microstructural
evolution sharply depends on the interaction type, particularly on the interaction rangeRint . For
the short-range-interaction systems, particularly for model 1 with the smallestRint , transient
microstructures include mainly the conservative antiphase boundaries (APBs) with (100)-type
orientation. The distribution of APBs in such systems reveals a number of peculiar features
discussed in section 3: characteristic ‘step-like’ APBs with (100)-oriented steps and small
ledges normal to them; triple junctions of two conservative APBs normal to each other with
a non-conservative APB; analogous ‘quadruple’ junctions; loop-like configurations of non-
conservative APBs adjacent to conservative ones; etc. These features agree well with the
experimental observations for Cu3Au alloy [24, 25]. In the course of the microstructural
evolution the conservative APBs remain virtually immobile, and the evolution is realized via
motion of non-conservative APBs and their interaction with the conservative APBs. This
interaction includes a number of specific kinetic processes: ‘sweeping’ of conservative APBs
by a moving non-conservative APB; wetting of conservative APBs by non-conservative APBs;
motion of triple junctions of two non-conservative APBs with a conservative APB along the
direction of the latter; and a peculiar process of ‘splitting’ of a non-conservative APB into
a conservative and a non-conservative APB with the formation of a triple junction or a new
antiphase domain. The splitting effect is related to very small energies of the conservative
APBs in short-range-interaction systems, and it was observed only in model 1 with the shortest
interaction range.

We also studied the influence of non-stoichiometry on the evolution by simulating the
A1 → L12 transformation for the second-neighbour interaction model 2 atc = 0.22 and
c = 0.32. The APB distribution does not reveal a great sensitivity to the concentration, but
the internal structure of APBs shows significant compositional changes. The degree of local
disordering of APBs at lowerc = 0.22 is notably higher than atc = 0.25, while atc = 0.32
both the non-conservative and conservative APBs show a significant degree of local ordering
of the L10 type.

The microstructural evolution for the fourth-neighbour-interaction models 4 and 5 greatly
differs from that for the short-range interaction systems. Transient microstructures in model 4
(which corresponds to a Ni–Al-type alloy) include mainly the non-conservative APBs, and the
APB distribution reveals only a slight anisotropy. However, the conservative APBs are also
present here and have a noticeable effect on the microstructures. The latter agrees with the
experimental observations for Ni3Al-type alloys [26]. At the same time, the microstructures
for the extended-range-interaction model 5 show neither conservative APBs nor anisotropy
in the APB distribution, while the triple junctions of APBs form approximately equiangle
configurations characteristic of isotropic systems. These microstructures are quite similar to
those observed in CuPd alloys [24].

Simulations of the A1→ A1 + L12 transition show that in the absence of significant
elastic interaction the microstructural evolution depends on the interaction type much more
weakly than that in the case of the A1→ L12 transition. For both short- and extended-
range-interaction systems, the interphase boundary (IPB) energies are approximately isotropic,
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greatly at variance with the APB energies in the L12 phase which are highly anisotropic in
the short-range-interaction systems and virtually isotropic in the extended-range-interaction
systems. Because of this, the transient microstructures under the A1→ A1 + L12 transition in
the systems with short-range interaction can show anisotropy only at the first stages of evolution,
when APBs formed under congruent ordering are not yet strongly wetted by the disordered
phase. Later on, this wetting transforms the APBs into IPBs and the initial anisotropy falls off.

The effect of elastic forces on microstructural evolution was studied in the simulations
for models 2′ and 4′ with short-range and extended-range chemical interactions, respectively.
The results of these simulations agree with the phenomenological description of elastic effects
developed by Khachaturyan and co-workers [4–6], and our simulations illustrate and make
specific many points noted by these authors. In particular, for model 2′ the elastic effects are
manifested even at early stages of the transformation, shortly after the completion of congruent
ordering when the sizes of ordered precipitates are relatively small; this is related to the short-
range character of the chemical interactions. In contrast, for the Ni–Al-type model 4′ these
effects become noticeable only at the advanced stages of coarsening, when the precipitate sizes
l become sufficiently large:l & 50a.

We also discuss the problem of transient congruent ordering mentioned in section 1.
The presence of this stage under the A1→ A1 + L12 transition was recently questioned as,
at the early stages of this transition in Al–Li alloys, Haasen and co-workers [27] observed
microstructures with neighbouring in-phase-ordered domains separated by a disordered layer,
which seemed to be incompatible with an occurrence of congruent ordering. To clarify
the problem, we made simulations of the A1→ A1 + L12 transition under conditions
similar to those of the experiments of Haasen and co-workers. In all of our simulations,
we observed the stage of congruent ordering. At the same time, both before and after this stage
we observed many microstructures with neighbouring in-phase domains, and some of the
simulated microstructures are quite similar to those observed by Haasen and co-workers [27].
Therefore, these experiments can correspond to other stages of evolution and do not contradict
the assertion of the occurrence of congruent ordering. We also discuss the temporal evolution
of local concentrations and local order parameters in the course of congruent ordering. We
show that a depletion of local concentration near APBs begins virtually simultaneously with
the appearance of ordered domains, and upon the completion of congruent ordering the
local concentration within the APB is already depleted. Therefore, the commonly used term
‘congruent ordering’ actually corresponds to the presence of APBs with locally equilibrated,
depleted concentration rather than to a ‘strictly congruent’ state with an unchanged initial
concentration throughout the alloy.
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